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Binary Classification 
 Suppose we have two groups for which each case is a 

member of one or the other, and that we know the 
correct classification (“truth”). We will call the two 
groups Disease and Healthy 

 Suppose we have a prediction method that produces a 
single numerical value, and that small values of that 
number suggest membership in the Healthy group and 
large values suggest membership in the Disease group. 

 How can we measure the success of the prediction 
method? 

 First, consider the case when we have a cutoff that 
defines which group is predicted. 

February 12, 2014 BST 226 Statistical Methods for Bioinformatics 2 



Disease Healthy Total 

Predict Disease A (True Positive) B (False Positive) A+B 

Predict Healthy C (False Negative) D (True Negative) C+D 

Total A+C B+D A+B+C+D 

February 12, 2014 BST 226 Statistical Methods for Bioinformatics 3 

 A: True Positive (TP), hit 
 D: True negative (TN), correct rejection 
 B: False positive (FP), false alarm, Type I error 
 C: False negative (FN), miss, Type II error 



Disease Healthy Total 

Predict Disease A (True Positive) B (False Positive) A+B 

Predict Healthy C (False Negative) D (True Negative) C+D 

Total A+C (Positive) B+D (Negative) A+B+C+D 
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 Sensitivity, True Positive Rate (TPR), recall 
 TPR = TP/P = TP/(TP+FN) = A/(A+C) 
 Fraction of those with the Disease that are correctly predicted 

 Specificity (SPC),  True Negative Rate 
 SPC = TN/N = TN/(TN+FP) = D/(B+D) 
 Fraction of those Healthy who are correctly predicted 

 Precision, Positive Predictive Value (PPV) 
 PPV = TP/(TP+FP) = A/(A+B) 
 Fraction of those predicted to have the Disease who do have it 

 Negative Predictive value (NPV) 
 NPV = TN/(TN+FN) = D/(C+D) 
 Fraction of those predicted to be healthy who are healthy 

 Fall-out or False Positive Rate (FPR) 
 FPR = FP/N = FP/(FP+TN) = 1 − SPC 
 Fraction of those healthy who are predicted to have the disease 

 False Discovery Rate (FDR) 
 FDR = FP/(TP+FP) = 1 − PPV 
 Fraction of those predicted to have the disease who are healthy 

 Accuracy (ACC)  
 ACC = (TP+TN)/(P+N) 



Dependence on Population 
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 Sensitivity and Specificity depend only on the test, not on the 
composition of the population, other figures are dependent 

 Sensitivity = fraction of patients with the disease who are predicted to 
have the disease (p = 0.98).  

 Specificity = fraction of patients who are healthy that are classified as 
healthy (q = 0.99). 

 If the population is 500 Disease and 500 healthy, then TP = 490, FN = 
10, TN = 495, FP = 5 and 
PPV = 490/(490 + 5) = 0.9899 

 If the population is 100 Disease and 1000 healthy, then TP = 98, FN = 2, 
TN = 990, FP = 10 and 
PPV = 98/(98 + 10) = 0.9074 

 If the population is 100 Disease and 10,000 healthy, then TP = 98, FN = 
2, TN = 9900, FP = 100 and 
PPV = 98/(98 + 100) = 0.4949 
 



ROC Curve (Receiver Operating Characteristic) 
 If we pick a cutpoint t, we can assign any case with a 

predicted value ≤ t to Healthy and the others to Disease. 
 For that value of t, we can compute the number correctly 

assigned to Disease and the number incorrectly assigned to 
Disease (true positives and false positives). 

 For t small enough, all will be assigned to Disease and for t 
large enough all will be assigned to Healthy. 

 The ROC curve is a plot of true positive rate vs. false 
positive rate.  

 If everyone is classified positive (t = 0), then  
TPR = TP/(TP+FN)  = FP/(FP + 0) = 1 
FPR = FP/(FP + TN) = FP/(FP + 0) = 1 

 If everyone is classified negative (t = 1), then  
TPR = TP/(TP+FN)  = o/(0 + FN) = 0 
FPR = FP/(FP + TN) = 0/(0 + TN) = 0 
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truth <- rep(0:1,each=50) 
pred <- c(rnorm(50,10,1),rnorm(50,12,1)) 
library(ROC) 
roc.data <- rocdemo.sca(truth,pred) 
 
plot1 <- function() 
{ 
  nz <- sum(truth==0) 
  n <- length(truth) 
  plot(density(pred[1:nz]),lwd=2,xlim=c(6,18), 
    main="Generating an ROC Curve") 
  lines(density(pred[(nz+1):n]),col=2,lwd=2) 
  abline(v=10,col=4,lwd=2) 
  abline(v=11,col=4,lwd=2) 
  abline(v=12,col=4,lwd=2) 
} 
> plot1() 
> plot(roc.data) 
> AUC(roc.data) 
[1] 0.8988 
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We now show the ROC curve for a rare outcome: 
 
> truth <- rep(0:1,c(990,10)) 
> pred <- c(rnorm(990,10,1),rnorm(10,12,1)) 
> plot(rocdemo.sca(truth,pred)) 
> AUC(rocdemo.sca(truth,pred)) 
[1] 0.9011111 
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Statistical Significance and 
Classification Success 
 It is easier for a variable to be statistically significant 

than for the classification using that variable to be 
highly accurate, measured, for example, by the ROC 
curve. 

 Suppose we have 100 patients, 50 in each group (say 
disease and control). 

 If the groups are separated by 0.5 times the within 
group standard deviation, then the p-value for the test 
of significance will be around 0.01 but the 
classification will only be 60% correct. 
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Statistical Significance and 
Classification Success 
 If the classification is to be correct 95% of the time, 

then the groups need to be separated by 3.3 times the 
within group standard deviation, and then the p-value 
for the test of significance will be around essentially 0. 

February 12, 2014 BST 226 Statistical Methods for Bioinformatics 14 



February 12, 2014 BST 226 Statistical Methods for Bioinformatics 15 



February 12, 2014 BST 226 Statistical Methods for Bioinformatics 16 

> truth <- rep(0:1,c(80,20)) 
> summary(glm(truth~var1,family=binomial)) 
 
Call: 
glm(formula = truth ~ var1, family = binomial) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.04601  -0.45586  -0.21127  -0.05413   2.11889   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.4727     0.6775  -5.125 2.97e-07 *** 
var1          1.8202     0.4038   4.508 6.55e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 100.080  on 99  degrees of freedom 
Residual deviance:  56.222  on 98  degrees of freedom 
AIC: 60.222 
 
Number of Fisher Scoring iterations: 6 
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> pred2 <- predict(glm(truth~var1,family=binomial),type="response") 
> table(truth,pred2 > .5) 
      
truth FALSE TRUE 
    0    75    5 
    1     9   11 
 
TPR = 11/20 = 0.55 
SPC = TNR = 75/80 = 0.9375 
PPV = 11/16 = 0.6875 
NPV = 75/84 = 0.8929 
FPR = 5/80 = 0.0625 
FDR = 5/16 = 0.3125 
 
> source("http://bioconductor.org/biocLite.R") 
> biocLite("ROC") 
> library(ROC) 
> plot(rocdemo.sca(truth,pred2)) 
> abline(v=0.0625,lwd=2) 
> abline(h=0.55,lwd=2) 
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Choosing a Cutoff 
 Suppose that missing a disease case has an implicit 

cost of $1000 and a false diagnosis of disease has an 
implicit cost of $200. 

 Then the cost of the procedure is 1000×FN+200×FP. 
 With a cut-off of 0.5, the estimated cost would be 

(1000)(9) + (200)(5) = $10,000 per 100 patients or $100 
per patient. 

 Let’s compute the cost for different cutoffs. 
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diagcost <- function(truth,predq,costp,costn) 
{ 
  n <- length(predq) 
  names(predq) <- "" 
  cutoffs <- c(sort(predq),1) 
  fpvec <- rep(0,n+1) 
  fnvec <- rep(0,n+1) 
  costvec <- rep(0,n+1) 
  for (i in 1:(n+1)) 
  { 
    predb <- predq >= cutoffs[i] 
    fp <- sum(predb &  !truth) 
    fn <- sum(!predb & truth) 
    cost <- fp*costp+fn*costn 
    fpvec[i] <- fp 
    fnvec[i] <- fn 
    costvec[i] <- cost 
  } 
  return(data.frame(1:(n+1),cutoffs,fpvec,fnvec,costvec)) 
} 
The least cost of $4200 (vs. $10,000) is at cutoff = 0.1286845279 
with 1 false negative and 16 false positives 
 
The cutoff of 0.5853639 minimizes the total errors with 2 false positives 
and 9 false negatives (cost $9400) 
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